Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress.

Identifieur interne : 000B74 ( Main/Exploration ); précédent : 000B73; suivant : 000B75

A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress.

Auteurs : Jianbo Li [République populaire de Chine] ; Pei Sun [République populaire de Chine] ; Yongxiu Xia [République populaire de Chine] ; Guangshun Zheng [République populaire de Chine] ; Jingshuang Sun [République populaire de Chine] ; Huixia Jia [République populaire de Chine]

Source :

RBID : pubmed:31744233

Descripteurs français

English descriptors

Abstract

The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.

DOI: 10.3390/ijms20225782
PubMed: 31744233
PubMed Central: PMC6888306


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Stress-Associated Protein,
<i>PtSAP13</i>
, From
<i>Populus trichocarpa</i>
Provides Tolerance to Salt Stress.</title>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yongxiu" sort="Xia, Yongxiu" uniqKey="Xia Y" first="Yongxiu" last="Xia">Yongxiu Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Guangshun" sort="Zheng, Guangshun" uniqKey="Zheng G" first="Guangshun" last="Zheng">Guangshun Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jingshuang" sort="Sun, Jingshuang" uniqKey="Sun J" first="Jingshuang" last="Sun">Jingshuang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31744233</idno>
<idno type="pmid">31744233</idno>
<idno type="doi">10.3390/ijms20225782</idno>
<idno type="pmc">PMC6888306</idno>
<idno type="wicri:Area/Main/Corpus">000606</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000606</idno>
<idno type="wicri:Area/Main/Curation">000606</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000606</idno>
<idno type="wicri:Area/Main/Exploration">000606</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Stress-Associated Protein,
<i>PtSAP13</i>
, From
<i>Populus trichocarpa</i>
Provides Tolerance to Salt Stress.</title>
<author>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xia, Yongxiu" sort="Xia, Yongxiu" uniqKey="Xia Y" first="Yongxiu" last="Xia">Yongxiu Xia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Guangshun" sort="Zheng, Guangshun" uniqKey="Zheng G" first="Guangshun" last="Zheng">Guangshun Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jingshuang" sort="Sun, Jingshuang" uniqKey="Sun J" first="Jingshuang" last="Sun">Jingshuang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Ethylenes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Nuclear Proteins (metabolism)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines nucléaires (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Nuclear Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Ethylenes</term>
<term>Nuclear Proteins</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines nucléaires</term>
<term>Protéines végétales</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Reporter</term>
<term>Plants, Genetically Modified</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Gènes rapporteurs</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
<term>Transgènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of
<i>SAP</i>
genes in poplars are still largely unknown. Here, the expression profiles of
<i>Populus trichocarpa SAPs</i>
in response to salt stress revealed that
<i>PtSAP13</i>
with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that
<i>PtSAP13</i>
was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The
<i>Arabidopsis</i>
transgenic plants overexpressing
<i>PtSAP13</i>
exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of
<i>PtSAP13</i>
increased salt tolerance. Higher activities of antioxidant enzymes were found in
<i>PtSAP13</i>
-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including
<i>Glutathione peroxidase</i>
<i>8</i>
,
<i>NADP-malic enzyme 2</i>
,
<i>Response to ABA and Salt 1</i>
,
<i>WRKYs</i>
,
<i>Glutathione S-Transferase</i>
, and
<i>MYBs</i>
, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that
<i>PtSAP13</i>
enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31744233</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2019</Year>
<Month>Nov</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>A Stress-Associated Protein,
<i>PtSAP13</i>
, From
<i>Populus trichocarpa</i>
Provides Tolerance to Salt Stress.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E5782</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms20225782</ELocationID>
<Abstract>
<AbstractText>The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of
<i>SAP</i>
genes in poplars are still largely unknown. Here, the expression profiles of
<i>Populus trichocarpa SAPs</i>
in response to salt stress revealed that
<i>PtSAP13</i>
with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that
<i>PtSAP13</i>
was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The
<i>Arabidopsis</i>
transgenic plants overexpressing
<i>PtSAP13</i>
exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of
<i>PtSAP13</i>
increased salt tolerance. Higher activities of antioxidant enzymes were found in
<i>PtSAP13</i>
-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including
<i>Glutathione peroxidase</i>
<i>8</i>
,
<i>NADP-malic enzyme 2</i>
,
<i>Response to ABA and Salt 1</i>
,
<i>WRKYs</i>
,
<i>Glutathione S-Transferase</i>
, and
<i>MYBs</i>
, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that
<i>PtSAP13</i>
enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jianbo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Yongxiu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Guangshun</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jingshuang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Huixia</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CAFYBB2019ZY003</GrantID>
<Agency>Fundamental Research Funds of Chinese Academy of Forestry</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31800569</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31800570</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000630547">SAP13 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">expression analysis</Keyword>
<Keyword MajorTopicYN="N">salt tolerance</Keyword>
<Keyword MajorTopicYN="N">stress-associated protein</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
<Keyword MajorTopicYN="N">transgene</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31744233</ArticleId>
<ArticleId IdType="pii">ijms20225782</ArticleId>
<ArticleId IdType="doi">10.3390/ijms20225782</ArticleId>
<ArticleId IdType="pmc">PMC6888306</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2012 Nov;80(4-5):503-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22961664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 12;10(11):e0143022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26562293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Dec;289:110259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31623781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Dec;10(12):615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 20;285(5431):1256-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10455050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 May 10;8(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31083365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2005 Nov;23(11):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16165235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 May;41(5):1171-1185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29194659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jun;30(5):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12047628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):453-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Dec;33(12):2047-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25236158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:619832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2018 Nov;276:181-188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30348317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Mar;33(3):483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Dec;276(6):565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17033811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 May;64(1-2):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22359644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2007 Aug;90(2):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17524611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20212128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2019 Apr;281:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30824042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Mar;66(5):445-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Sep;33(9):1425-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24965356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2008 Sep 1;420(2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18588956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Nov;96:311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26332661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(9):2829-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27162276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Sep 1;34(17):i884-i890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30423086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jul 28;7:1104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27516763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2018 Jun 20;66(24):5992-6002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29847118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Mar;33(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Nov;196:67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Aug;191(3):721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21534973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Sep 5;265(25):14705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2118515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Aug;225:68-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25017161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15079051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2014 Feb;21(1):69-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24104396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 12;8:994</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28659945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2018 Apr 17;226:12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29689430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Sep 1;169(13):1261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22633820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):239-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 Aug;35(8):1587-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27021382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Mar;75(4-5):451-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Jul;244(1):59-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26945856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Dec;55(12):2060-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25261532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Sep;53(9):1596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22773682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Mar;35(3):626-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 May;61(1-2):13-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):139-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2015 Apr;12(4):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25751142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Aug;37(8):1159-1172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29796948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Sep 8;275(36):27924-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Apr;153(4):538-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25135325</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
</noRegion>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<name sortKey="Jia, Huixia" sort="Jia, Huixia" uniqKey="Jia H" first="Huixia" last="Jia">Huixia Jia</name>
<name sortKey="Li, Jianbo" sort="Li, Jianbo" uniqKey="Li J" first="Jianbo" last="Li">Jianbo Li</name>
<name sortKey="Sun, Jingshuang" sort="Sun, Jingshuang" uniqKey="Sun J" first="Jingshuang" last="Sun">Jingshuang Sun</name>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<name sortKey="Sun, Pei" sort="Sun, Pei" uniqKey="Sun P" first="Pei" last="Sun">Pei Sun</name>
<name sortKey="Xia, Yongxiu" sort="Xia, Yongxiu" uniqKey="Xia Y" first="Yongxiu" last="Xia">Yongxiu Xia</name>
<name sortKey="Zheng, Guangshun" sort="Zheng, Guangshun" uniqKey="Zheng G" first="Guangshun" last="Zheng">Guangshun Zheng</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31744233
   |texte=   A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31744233" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020